Sand response to a large number of loading cycles under zero-lateral-strain conditions: evolution of void ratio and small-strain stiffness

Author:

Park J.1ORCID,Santamarina J. C.2

Affiliation:

1. Earth Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

2. Earth Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Abstract

Geotechnical structures often experience a large number of repetitive loading cycles. This research examines the quasi-static mechanical response of sands subjected to repetitive loads under zero-lateral-strain boundary conditions. The experimental study uses an automatic repetitive loading frame operated with pneumatic pistons. Both vertical deformation and shear wave velocity are continuously monitored during 10 000 repetitive loading cycles. The void ratio evolves towards the terminal void ratio eT as the number of load cycles increases. The terminal void ratio eT is a function of the initial void ratio e0 and the stress amplitude ratio Δσ/σ0. The number of cycles N* required to reach half of the final volume contraction ranges from N*→1 for densely packed sands (e0→emin) to N→103 for loosely packed sands (e0→emax). As the soil approaches terminal density at a large number of cycles, peak-to-peak strains are dominated by elastic deformations, and the minute plastic strains that remain in every cycle reflect local and sequential contact events. The shear wave velocity increases during cyclic loading with data suggesting a gradual increase in the coefficient of earth pressure K0 during repetitive loading. Changes in shear wave velocity track the evolution of the constrained modulus M; in fact, the constrained modulus can be estimated from the shear wave velocity to compute soil deformation in a given cycle. A simple procedure is suggested to estimate the potential settlement a layer may experience when subjected to repetitive mechanical loads.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3