Laboratory investigations of coupled polyethylene–sand–soft soil shallow foundations

Author:

Bajwa Tariq Mahmood1,Fazeel Muhammad2,Alshawmar Fahad3,Khan Muhammad Kamran4

Affiliation:

1. Assistant Professor, NUST Institute of Civil Engineering, School of Civil and Environmental Engineering, National University of Sciences & Technology, Islamabad, Pakistan (corresponding author: )

2. Lecturer, Department of Civil Engineering, Islamia University of Bahawalpur, Bahawalpur, Pakistan

3. Assistant Professor, Department of Civil Engineering, College of Engineering, Qassim University, Buraydah, Saudi Arabia

4. Head, Construction Policy, Standards and Contracts Branch, Transportation Infrastructure and Management Division, Ministry of Transportation, London, ON, Canada

Abstract

This study investigates clayey soil from a road project situated in the district of Lodhran, Punjab, Pakistan. The subgrade prepared with the soil distorted due to heaving after a certain period of its construction. First, laboratory tests were conducted to explore the reason for this problem, examining the fundamental engineering properties of soil. The test results show that the soil acts as a soft material when water content reaches 30%, significantly reducing its strength. The soft soil is generally considered unsuitable for civil work due to its poor performance behaviour. So, the performance of clayey soil was examined in the study at its soft state by coupling it with stronger materials, such as polyethylene polymeric reinforcement and sand, developing laboratory-scale foundation models. Based on the model studies, the study proposes a sustainable polyethylene–sand–soft soil model, which shows 155 and 56% higher ultimate bearing capacity (BC) than soft soil and sand-reinforced soft soil foundations. The changes in BC occur due to the reinforcement action of the polyethylene reinforcement, which is associated with its tensile membrane action effects and interlock bonding at the soil-reinforcement interface. Practically, the study can reduce the dependency of industry practitioners on sand materials. Using polyethylene in civil work is viable for environmental sustainability.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Proceedings of the Institution of Civil Engineers - Ground Improvement;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3