Yield line-based design of fibre reinforced concrete: assessment of suitability of material models

Author:

Koorikkattil Ajeesh1,Nayar Sunitha K.2,Venudharan Veena3

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Palakkad, Kerala, India

2. Environmental Sciences and Sustainable Engineering Centre (ESSENCE), Indian Institute of Technology Palakkad, Kerala, India

3. Department of Civil Engineering & ESSENCE, Indian Institute of Technology Palakkad, Kerala, India

Abstract

The present research is intended to address the adequacy of flexural toughness-based material models such as equivalent and residual flexural strength, and the deflection limits at which these parameters are estimated for design of fibre reinforced concrete (FRC), for various applications such as slabs-on-grade/pavements. The work is an experimental study using FRC concrete mixes with individual and hybrid combinations of hooked-end steel (SF) and macro polypropylene fibres (PF). The experimental investigation consisted of toughness testing unnotched and notched prisms and square slabs, prepared with a typical grade of concrete used for FRC pavement applications. To validate the material models, a comparison was made between the theoretical moment/load calculated based on material flexural toughness parameters and the actual moment obtained from slabs using actual yield line formed during testing. From the study it is observed that overall, both equivalent (from unnotched prism test) and residual (from notched prism test) flexural strength, are suitable for designing FRC slabs, however the equivalent strength parameter shows better correlation to the slab response. The results also indicate that the hybrid mixes of PF and SF, with a higher volume fraction of 0.6% Vf, shows a marginal increase in flexural performance, in comparison to the mixes with lower volume fraction but no or minimal synergy due to hybridisation.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3