Nanoindentation and nano-scratch testing on cement paste

Author:

Barbhuiya Salim1,Das Bibhuti Bhusan2

Affiliation:

1. Senior Lecturer, Department of Engineering and Construction, University of East London, London, UK (corresponding author: )

2. Associate Professor, Civil Engineering Department, National Institute of Technology Surathkal, Surathkal, India

Abstract

Carbon nanotubes are an attractive reinforcement material for several composites. This is due to their inherently high tensile strength and high modulus of elasticity. This study focused on the nanomechanical characteristics of cement paste with and without short multi-walled carbon nanotubes (MWCNTs). The objective behind studying the nanomechanical properties of cement paste is to better understand the fundamental behaviour of cement at the nanoscale level. Cement paste is a complex material that consists of various phases, including cement hydrates, unhydrated cement particles and porosity. By studying the mechanical properties of cement paste at the nanoscale, researchers can gain insights into the mechanisms that govern the behaviour of this material. Following earlier tests, the amount of MWCNTs was kept constant (0.30% by weight of cement). The nanomechanical parameters explored included the localised Young's modulus and hardness. According to the test results, short MWCNTs increased the proportion of high-density calcium silicate hydrate in the cement paste. The nanomechanical properties (localised Young's modulus and hardness) of cement paste with short MWCNTs were found to be greater than those of cement paste without MWCNTs. According to nano-scratching experiments, the cement matrix with short MWCNTs was substantially more durable than the matrix without them.

Publisher

Thomas Telford Ltd.

Subject

Mechanics of Materials,General Materials Science,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Proceedings of the Institution of Civil Engineers - Construction Materials;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3