Passive earth pressure under various modes of wall movement: a numerical approach

Author:

Lanabi Houssem Eddine1,Benmebarek Sadok2,Benmebarek Naima2

Affiliation:

1. PhD student, Doctor, NMISSI Laboratory, Department of Civil Engineering and Hydraulic, Biskra University, Algeria (corresponding author: )

2. Professor, NMISSI Laboratory, Department of Civil Engineering and Hydraulic, Biskra University, Algeria

Abstract

Numerical computations using an explicit-finite difference code were carried out to evaluate the passive earth pressure magnitude and distribution against a retaining wall subjected to different wall movement modes: translation (T), rotation about the bottom (RB) and rotation about the top (RT). In agreement with classical solutions, the results showed that, in T mode, passive earth pressure distribution was substantially hydrostatic with depth for all the wall displacement stages. However, when either RT or RB was considered, a clear non-linear distribution that was strongly affected by the wall displacement magnitude was noted. For the RT mode, due to the arching effect, the increase in earth pressure behind the lower half of the wall was more pronounced, with the wall displacement hardly affecting the centroid of the passive load distribution located below the commonly used one-third of the wall height. In RB mode, as wall rotation progressed, the passive earth pressure mobilised in upper part of the wall increased and its distribution gradually changed from a non-linear to linear distribution. Compared with previous experimental results available in the literature, it was found that mobilised passive earth pressure in RB and RT modes needs more displacement than in the T mode.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seepage-induced passive earth pressure modification of retaining structures considering composite failure surface;Marine Georesources & Geotechnology;2024-05-11

2. Passive earth pressure due to surcharge loading under three modes of wall movement;International Journal of Geotechnical Engineering;2024-02-07

3. Editorial;Proceedings of the Institution of Civil Engineers - Geotechnical Engineering;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3