Design Principles for Moisture-Tolerant Sulfide-Based Solid Electrolytes and Associated Effect on the Electrochemical Performance of All-Solid-State Battery

Author:

Kwon Ohmin,Kim Se Young,Hwang Jinyeon,Han Jonghyun,Yu Seungho,Yim Taeeun,Oh Si Hyoung

Abstract

<p>The grave concern on the safety of Li-ion batteries adopted in commercial electrical vehicles pushes an urgent demand for developing safer all-solid-state batteries (ASSBs), where ion-conducting solid electrolytes play pivotal roles. Much higher conductivity and more ductile nature of sulfide-based electrolytes offers great advantages over conventional oxide materials in terms of manufacturing process difficulty and the battery performance. However, instability of sulfide materials towards atmospheric moisture results in the substantial degradation in the ionic conductivity and the release of hazardous gas. After over a decade of intensive research, various customized strategies based on the specific design rules were developed for each electrolyte to tackle this crucial issue. However, in most cases a moisture tolerance was endowed only after compromising its vital ionic conductivity to some extent. Nevertheless, the actual applications of sulfide electrolytes to ASSBs often lead to improved battery performance by virtue of the interfacial stabilization between oxide-based cathode materials and sulfide-based solid electrolytes. Therefore, it is essential to fully comprehend the critical factors of each atmospheric stabilization technology that potentially affects the eventual battery performance. Herein, we go over the current status of state-of-the-art moisture-stabilizing technologies for each sulfide-based solid electrolyte, summarizing the major effect of each technology on the various aspect of the electrochemical performance upon application. We believe that this review will contribute to achieving effective moisture-stabilization of sulfide-based solid electrolytes, catalyzing the successful commercialization of sulfide-based ASSBs.</p>

Funder

Korea Institute of Science and Technology

National Research Foundation of Korea

Ministry of Education

Publisher

The Korean Electrochemical Society - English Journal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3