Multi-Channel 2D-CNN Attention Based BiLSTM Method for Low-Resource Ewe Sentiment Analysis

Author:

Agbesi Victor KwakuORCID, ,Chen Wenyu,Ukwuoma Chiagoziem C.ORCID,Kuadey Noble A.ORCID,Agbesi Collinson Colin M.ORCID,Ejiyi Chukwuebuka J.,Gyarteng Emmanuel S. A.ORCID,Muoka Gladys W.ORCID,Kuadey Anthony M., , , , , , , ,

Abstract

The unavailability of an annotated dataset for a low-resource Ewe language makes it difficult to develop an automated system to appropriately evaluate public opinion on events, news, policies, and regulations. In this study, we collected and preprocessed a low-resourced document-level Ewe sentiment dataset based on social media comments. We used three (3) features learned by word embeddings (Global vectors, word-to-vector, and FastText) rather than hand-crafted features. We further proposed a novel method termed MC2D-CNN+BiLSTM-Attn to detect the exact sentiment feature from the Ewe dataset. Extensive experiments indicate that the proposed method efficiently classifies various sentiments and is superior to benchmark deep learning methods. Results show that in detecting the precise sentiments from raw Ewe textual context, the BiLSTM incorporating Glove outperforms word2vec and FastText embedding with an accuracy of 0.727. Furthermore, Attn+BiLSTM and Multi-channel CNN methods incorporating the word2vec embedding layer perform better than Glove and FastText embedding with an accuracy of 0.848 and 0.896. In contrast, our proposed method with the same word2vec embedding recorded 0.949.

Publisher

BON VIEW PUBLISHING PTE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3