Emergent Coding and Topic Modeling: A Comparison of Two Qualitative Analysis Methods on Teacher Focus Group Data

Author:

Miyaoka Atsushi1,Decker-Woodrow Lauren1ORCID,Hartman Nancy1,Booker Barbara2,Ottmar Erin3

Affiliation:

1. Westat, Rockville, MD, USA

2. Independent Consultant, Cumming, GA, USA

3. Worchester Polytechnic Institute, Worcester, MA, USA

Abstract

More than ever in the past, researchers have access to broad, educationally relevant text data from sources such as literature databases (e.g., ERIC), an open-ended response from online courses/surveys, online discussion forums, digital essays, and social media. These advances in data availability can dramatically increase the possibilities for discovering new patterns in the data and testing new theories through processing texts with emerging analytic techniques. In our study, we extended the application of Topic Modeling (TM) to data collected from focus groups within the context of a larger study. Specifically, we compared the results of emergent qualitative coding and TM. We found a high level of agreement between TM and emergent qualitative coding, suggesting TM is a viable method for coding focus group data when augmenting and validating manual qualitative coding. We also found that TM was ineffective in capturing more nuanced information than the qualitative coding was able to identify. This can be explained by two factors: (1) the word level tokenization we used in the study, and (2) variations in the terminology teachers used to identify the different technologies. Recommendations include additional data cleaning steps researchers should take and specifications within the topic modeling code when using topic modeling to analyze focus group data.

Funder

Institute of Education Sciences

Publisher

SAGE Publications

Subject

Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3