A Comparison of Leximancer Semi-automated Content Analysis to Manual Content Analysis: A Healthcare Exemplar Using Emotive Transcripts of COVID-19 Hospital Staff Interactive Webcasts

Author:

Engstrom Teyl1ORCID,Strong Jenny2,Sullivan Clair3,Pole Jason D.4

Affiliation:

1. Centre for Health Services Research, The University of Queensland, Herston, QLD, Australia

2. Metro North Hospital and Health Services, Brisbane Australia, The University of Queensland, School of Health and Rehabilitation Sciences, Professor Occupational Therapy, University of Southern Queensland

3. Centre for Health Services Research, The University of Queensland, Herston, QLD, Australia; Metro North Hospital and Health Services, Brisbane Australia

4. Centre for Health Services Research, The University of Queensland, Herston, QLD, Australia; The University of Toronto, Dalla Lana School of Public Health, Toronto, ON, Canada

Abstract

Effective consumer centred healthcare incorporates consumer and clinician perspectives into decision making, in addition to traditional quantitative measures. This information is usually captured in qualitative data that requires manual analysis. Healthcare systems often lack resources to systematically incorporate qualitative feedback into decision making. Semi-automated content analysis tools, such as Leximancer, provide an efficient and objective alternative to time consuming manual content analysis (MCA). Literature on the validity of Leximancer in healthcare is sparse. This study seeks to validate Leximancer against MCA on a broad emotive conversational dataset gathered in a healthcare setting. At the outset of the COVID-19 pandemic, a large Australian hospital and health service conducted interactive webcasts with staff to provide updates and answer questions. A manual thematic analysis and a Leximancer content analysis were conducted independently on 20 webcast transcripts. The findings were compared, along with the time required to the complete each analysis. The Leximancer analysis identified nine concepts, while the manual analysis identified 12 concepts. The Leximancer concepts mapped to five of the concepts identified in the manual analysis, which accounted for 74% of mentions tagged in the text through the manual analysis. Leximancer missed concepts which required an emotional or contextual interpretation. The Leximancer analysis took 21 hours (excluding time to learn the program), compared to 73 hours for the manual analysis. Semi-automated content analysis provides an efficient alternative to manual qualitative data analysis, shifting it from a small-scale research activity to a more routine operational activity, albeit with some limitations. This is critical to be able to utilise at scale the rich narratives from consumers and clinicians in healthcare decision making.

Publisher

SAGE Publications

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3