Proportional Classification Revisited: Automatic Content Analysis of Political Manifestos Using Active Learning

Author:

Wiedemann Gregor1

Affiliation:

1. Hamburg University, Germany

Abstract

Supervised machine learning is a promising methodological innovation for content analysis (CA) to approach the challenge of ever-growing amounts of text in the digital era. Social scientists have pointed to accurate measurement of category proportions and trends in large collections as their primary goal. Proportional classification, for example, allows for time-series analysis of diachronic data sets or correlation of categories with text-external covariates. We evaluate the performance of two common approaches for this goal: a method based on regression analysis with feature profiles from entire collections and a method aggregating classifier decisions for individual documents. For both, we observed a significant negative effect on classification performance due to the uneven distribution of characteristic language structures within the text collection. For proportional classification, this poses considerable problems. To fix this problem, we propose a workflow of active learning, which alternates between machine learning and human coding. Results from experiments with empirical data (political manifestos) demonstrate that active learning enables researchers to create training sets for automatic CA efficiently, reliably, and with high accuracy for the desired goal while retaining control over the automatic process.

Publisher

SAGE Publications

Subject

Law,Library and Information Sciences,Computer Science Applications,General Social Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3