Advanced waveform analysis of the photoplethysmogram signal using complementary signal processing techniques for the extraction of biomarkers of cardiovascular function

Author:

Mathieu Aristide Jun Wen1,Pascual Miquel Serna2,Charlton Peter H3ORCID,Volovaya Maria2,Venton Jenny2,Aston Philip J4,Nandi Manasi2ORCID,Alastruey Jordi1

Affiliation:

1. Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, St Thomas’ Hospital, London, UK

2. School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK

3. Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, UK

4. Department of Mathematics, University of Surrey, Guildford, UK

Abstract

Introduction Photoplethysmogram signals from wearable devices typically measure heart rate and blood oxygen saturation, but contain a wealth of additional information about the cardiovascular system. In this study, we compared two signal-processing techniques: fiducial point analysis and Symmetric Projection Attractor Reconstruction, on their ability to extract new cardiovascular information from a photoplethysmogram signal. The aim was to identify fiducial point analysis and Symmetric Projection Attractor Reconstruction indices that could classify photoplethysmogram signals, according to age, sex and physical activity. Methods Three datasets were used: an in-silico dataset of simulated photoplethysmogram waves for healthy male participants (25–75 years old); an in-vivo dataset containing 10-min photoplethysmogram recordings from 57 healthy subjects at rest (18–39 or > 70 years old; 53% female); and an in-vivo dataset containing photoplethysmogram recordings collected for 4 weeks from a single subject, in daily life. The best-performing indices from the in-silico study (5/48 fiducial point analysis and 6/49 Symmetric Projection Attractor Reconstruction) were applied to the in-vivo datasets. Results Key fiducial point analysis and Symmetric Projection Attractor Reconstruction indices, which showed the greatest differences between groups, were found to be consistent across datasets. These indices were related to systolic augmentation, diastolic peak positioning and prominence, and waveform variability. Both fiducial point analysis and Symmetric Projection Attractor Reconstruction techniques provided indices that supported the classification of age and physical activity, but not sex. Conclusions Both fiducial point analysis and Symmetric Projection Attractor Reconstruction techniques demonstrated utility in identifying cardiovascular differences between individuals and within an individual over time. Future research should investigate the potential utility of these techniques for extracting information on fitness and disease, to support healthcare-decision making.

Funder

Wellcome Trust/EPSRC Centre for Medical Engineering at King’s College London

British Heart Foundation

Department of Health through the National Institute for Health Research Cardiovascular MedTech Co-Operative at Guy’s and St Thomas’ NHS Foundation Trust

King’s College London Confidence in Concept’

King's College London CDT

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3