An Understudied Dimension: Why Age Needs to Be Considered When Studying Epigenetic-Environment Interactions

Author:

Barrere-Cain Rio1ORCID,Allard Patrick12

Affiliation:

1. Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, USA

2. Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA

Abstract

We live in a complex chemical environment where there are an estimated 350 000 chemical compounds or mixtures commercially produced. A strong body of literature shows that there are time points during early development when an organism’s epigenome is particularly sensitive to chemicals in its environment. What is less understood is how gene-environment and epigenetic-environment interactions change with age. This question is bidirectional: (1) how do chemicals in the environment affect the aging process and (2) how does aging affect an organism’s response to its chemical environment? The study of gene-environment interactions with age is especially important because, in many parts of the world, older individuals are a large and rapidly growing proportion of the population and because aging is a process universal to most of the animal kingdom. Epigenetics has emerged as a crucial framework for studying aging as epigenetic pathways, often triggered by environmental stimuli, have been shown to be essential regulators of the aging process. In this perspective article, we delineate the connection between aging, epigenetics, and environmental exposures. We discuss why it is essential to consider age when researching how an organism interacts with its environment. We describe recent advances in understanding how the chemical environment affects aging and the gap in research on how age affects an organism’s response to the environment. Finally, we highlight how model organisms and network approaches can help fill this crucial gap. Taken together, systemic changes that occur in the epigenome with age indicate that adult organisms cannot be treated as a homogeneous population and that there are discrete mechanisms modulating the aging epigenome that we do not yet understand.

Publisher

SAGE Publications

Subject

Genetics,Biochemistry

Reference86 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3