Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution

Author:

Liu An1,Sun Miao2,Yang Xianyan3,Ma Chiyuan1,Liu Yanming2,Yang Xu4,Yan Shigui1,Gou Zhongru3

Affiliation:

1. Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

2. Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

3. Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, China

4. Department of Orthopaedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China

Abstract

Some Ca–Mg-silicate ceramics have been widely investigated to be highly bioactive and biodegradable, whereas their osteogenic potential and especially biomechanical response in the early stage in vivo are scarcely demonstrated. Herein, the osteogenesis capacity and mechanical evolution of the akermanite (Ca2MgSi2O7) porous materials manufactured by ceramic ink writing three-dimensional printing technique were investigated systematically in a critical size femur defect model, in comparison with the clinically available β-tricalcium phosphate porous bioceramic. Such three-dimensional printed akermanite scaffolds possess fully interconnected pores of ∼280 × 280 µm in size and over 50% porosity with appreciable compressive strength (∼71 MPa), that is 7-fold higher than that of the β-tricalcium phosphate porous bioceramics (∼10 MPa). After 6 weeks and 12 weeks of implantation, the percentage of newly formed bone and more new bone was observed in the akermanite group as compared with the β-tricalcium phosphate group ( p < 0.01). Moreover, significant higher mRNA expressions of osteogenic genes were detected in the akermanite group by PCR analysis ( p < 0.01). The in vivo mechanical strength decreased during the process of implantation, but maintained a relative high level (∼14 MPa) which was still higher than that of the host cancellous bone (5–10 MPa) at 12 weeks post-implantation. On the contrary, the β-tricalcium phosphate scaffold always exhibited a very low mechanical strength (∼8 MPa). These results suggest that the three-dimensional printed akermanite scaffolds are promising for the bone tissue regeneration and repair of load-bearing bone defects.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3