Guided bone regeneration with extracellular matrix scaffold of small intestinal submucosa membrane

Author:

Liu Zihao1,Wei Pengfei2,Cui Qingying3,Mu Yuzhu4,Zhao Yifan4,Deng Jiayin4,Zhi Min4,Wu Yi4,Jing Wei2,Liu Xian5,Zhao Jihong6,Zhao Bo2

Affiliation:

1. Tianjin Nankai Zhongnuo Stomatological Hospital, Tianjin, China

2. Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China

3. School of Stomatology Kunming Medical University, Kunming, China

4. School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China

5. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, ChengDu, China

6. The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, China

Abstract

Guided bone regeneration (GBR) is a promising strategy for repairing bone defects using bioactive membranes. In this study, a new type of GBR membrane based on the small intestinal submucosa (SIS) was created, and its surface structure, cytological characteristics, and bone defect repair ability were compared with commonly used membranes. Our results show that compared to the Heal-all and Dentium membranes, the SIS membrane has an asymmetric structure that does not affect the proliferation of bone marrow mesenchymal stem cells (BMSCs). Instead, it increased their formation of calcium nodules and expression of bone morphogenetic protein-2 (BMP-2), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN). Six weeks after their insertion into a rat calvarial defect model, increased bone growth was observed in the SIS membrane group. Our results indicate that the SIS membrane has good biocompatibility and is more effective in promoting early bone formation than existing membranes. Given the wide range of source materials and simple preparation processes available, SIS membrane is a promising candidate for guided bone regeneration.

Funder

Clinical Research Special Fund of Wu Jieping Medical Foundation

Scientific Foundation of Tianjin Education Commission

Guangdong Basic and Applied Basic Research Foundation

Science and technology project of Tianjin Health Committee

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3