Screening and analysis of key genes in the biological behavior of bone mesenchymal stem cells seeded on gradient nanostructured titanium compared with native pure Ti

Author:

Shang Xinyue1,Liu Keda1,Wang Zhenbo2ORCID,Sun Yantao2,Cao Nanjue1,Huang Wei1,Zhu Yuhe1,Wang Wei1ORCID

Affiliation:

1. General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China

2. Metallic Nano-Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy Sciences, Shenyang 110016, China

Abstract

Titanium (Ti) and Ti-based alloy materials are ideal brackets that restore bone defect, and the mechanism of related genes inducing bone mesenchymal stem cells (BMSCs) to osteogenic differentiation is currently a hot research topic. In order to screen key genes of BMSCs during the osteogenic expression process, we acquired data sets (GSE37237 and GSE84500) which were in the database Gene Expression Omnibus (GEO). Investigations on differentially expressed genes (DEGs) and their enrichment of functions were conducted. We constructed relative protein-protein interaction (PPI) network by using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized the expression of DEGs with Cytoscape. A total of 279 DEGs were discerned, which could be divided into 177 down regulated genes and 102 up regulated genes. In addition, the DEGs' enrichment and pathways included regulation of actin cytoskeleton, inflammatory mediator regulation of transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPAR) pathway, cell cycle, Rheumatoid arthritis, mitogen-activated protein kinases (MAPK) signaling pathway and Ras signaling pathway ect. It showed that 10 notable up regulated genes were mainly in AMP-activated protein kinase (AMPK) pathway. Then we used a technology named surface mechanical attrition treatment (SMAT) to prepare gradient nanostructured (GNS) surface Ti and seeded well-growing BMSCs on the surface of SMAT Ti and native pure Ti. Cell Counting Kits-8 (CCK-8), apoptosis experiment, immunofluorescence technology and staining experiments for alka-line phosphatase (ALP) and alizarin red staining (ARS) were used to research the proliferation, adhesion and differentiation ability of BMSCs seeded on SMAT Ti compared with native pure Ti. We used quantitative real-time PCR (qRT-PCR) technology so as to verify the expression of the most significant 5 genes. In summary, these results indicated novel point of views into candidate genes and potential mechanism for the further study of BMSCs' behaviors seeded on SMAT Ti.

Funder

Liaoning Provincial Natural Science Foundation Guidance Project

National Natural Science Foundation of China

Liaoning Provincial Department of Science and Technology People's Livelihood Science and Technology Plan

Liaoning Provincial Key Research Plan Guidance Project

Shenyang Young and Middle-aged Technological Innovation Talent Plan

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3