Impact of topography and added TiN-coating on adult human dermal fibroblasts after seeding on titanium surface in-vitro

Author:

Hauschild G.1ORCID,Hardes J.1,Dudda M.2,Streitbürger A.1,Wahrenburg M.1

Affiliation:

1. Department of Orthopedic Oncology, University Hospital Essen, Essen, Germany

2. Clinic of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, Essen, Germany

Abstract

Complications of transcutaneous osseointegrated prosthetic systems (TOPS) focus on the metal-cutaneous interface at the stoma. Besides pain due to scare tissue as well as undefined neuropathic disorders, there is high evidence that the stoma presents the main risk causing hypergranulation and ascending infection. To restore the cutaneous barrier function in this functional area, soft-tissue on- or in-growth providing a vital and mechanically stable bio-artificial conjunction is considered a promising approach. In this study we assessed viability and proliferation of adult human dermal fibroblasts (HDFa) on modifications of a standard prosthetic titanium surface. Un-coated (TiAl6V4) as well as a titanium-nitrite (TiN) coated additive manufactured porous three-dimensional surface structures (EPORE®) were seeded with HDFa and compared to plain TiAl6V4 and polystyrene surfaces as control. Cell viability and proliferation were assessed at 24 h and 7 days after seeding with a fluorescence-based live-dead assay. Adhesion and cell morphology were analyzed by scanning electron microscopy at the respective measurements. Both EPORE® surface specifications revealed a homogenous cell distribution with flat and spread cell morphology forming filopodia at both measurements. Proliferation and trend to confluence was seen on un-coated EPORE® surfaces with ongoing incubation but appeared substantially lower on the TiN-coated EPORE® specification. While cell viability on both EPORE® specifications was comparable to plain TiAL6V4 and polystyrene controls, cell proliferation and confluence were less pronounced when compared to controls. The EPORE® topography allows for fibroblast adhesion and viability in both standard TiAl6V4 and – to a minor degree - TiN-coated specifications as a proof of principle.

Funder

Stiftung Universitätsmedizin Essen

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3