Induction suspension plasma sprayed biological-like hydroxyapatite coatings

Author:

Loszach Max1,Gitzhofer François1

Affiliation:

1. Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada

Abstract

Substituted hydroxyapatite coatings with different ions (Mg, Na, K, Cl, F) have been developed by the induction suspension plasma spray process. Suspensions were prepared with sol–gel. The main objective of this study was to demonstrate that induction suspension plasma spray technology possesses high material composition flexibility that allows as-sprayed coatings to closely mimic natural bone composition. Long-term in vitro behaviour of as-sprayed substituted coatings was evaluated with simulated body fluid. Data on the suspensions showed the formation of a pure hydroxyapatite phase. Transmission electron microscopy characterized various preparation stages of the suspensions. As-sprayed samples were distinguished by X-ray diffraction and scanning electron microscopy. Substituted elements were quantified by neutron activation. A well-crystallized hydroxyapatite phase was produced with concentration in various substitutions very close to natural bone composition. Ca/P and (Ca + Mg + Na + K)/P ratios provided evidence of the introduction of different cations into apatite structures. The immersion of samples into simulated body fluid led to the nucleation and growth of a flake-like octacalcium phosphate crystal layer at the surface of as-sprayed coatings after one week. Proof of octacalcium phosphate transformation and its partial dissolution and direct re-precipitation into apatite was disclosed by local energy dispersive spectroscopy and microstructure observation. Formation of a Ca/P ratio gradient from the precipitated layer surface to the as-sprayed coatings interface was observed after four weeks once the octacalcium phosphate crystals reached a critical size, resulting in the formation of a rich apatite layer at the interface after six weeks. A set of mechanisms has been proposed to explain these findings.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3