Affiliation:
1. Institute of Composite and Biomedical Materials, National Research Council, P.le Tecchio 80, 80125, Naples, Italy
2. Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
Abstract
Nucleus pulposus (NP) is the soft center of the intervertebral disc (IVD), able to resist compressive loads, while the annulus fibrosus withstands tension and gives mechanical strength. NP function may be altered as consequence of several pathologies or injury and when a damaged IVD does not properly play its role. In the past years, a great effort has been devoted to the design of injectable systems as NP substitutes. The different synthetic- and natural hydrogel-based materials proposed, present many drawbacks and, in particular, they do not seem to mimic the required behavior. In the search for natural-based systems a dodecylamide of hyaluronic acid (HA), HYADD3®, has been proved as bioactive and suitable vehicle to carry cells for NP tissue engineering, while a crosslinked HA ester, HYAFF120® showed interesting results if used as injectable acellular material. Even though these derivatives showed appropriate biological behavior up to now, data on mechanical behavior of these derivatives are still missing. In this frame, the aim of this study was to provide a rheological characterization of these HA derivatives to asses their biomechanical compatibility with the NP tissue. To this, the rheological properties of these derivatives were studied through dynamic shear tests before and after injection through needles used in the current surgical procedure. Both HA derivatives showed a ‘gel-like’ rheological behavior similar to the native NP tissue and this behavior was not altered by injection.
Subject
Biomedical Engineering,Biomaterials
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献