Rheological Characterization of Hyaluronic Acid Derivatives as Injectable Materials Toward Nucleus Pulposus Regeneration

Author:

Gloria Antonio1,Borzacchiello Assunta1,Causa Filippo2,Ambrosio Luigi1

Affiliation:

1. Institute of Composite and Biomedical Materials, National Research Council, P.le Tecchio 80, 80125, Naples, Italy

2. Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy

Abstract

Nucleus pulposus (NP) is the soft center of the intervertebral disc (IVD), able to resist compressive loads, while the annulus fibrosus withstands tension and gives mechanical strength. NP function may be altered as consequence of several pathologies or injury and when a damaged IVD does not properly play its role. In the past years, a great effort has been devoted to the design of injectable systems as NP substitutes. The different synthetic- and natural hydrogel-based materials proposed, present many drawbacks and, in particular, they do not seem to mimic the required behavior. In the search for natural-based systems a dodecylamide of hyaluronic acid (HA), HYADD3®, has been proved as bioactive and suitable vehicle to carry cells for NP tissue engineering, while a crosslinked HA ester, HYAFF120® showed interesting results if used as injectable acellular material. Even though these derivatives showed appropriate biological behavior up to now, data on mechanical behavior of these derivatives are still missing. In this frame, the aim of this study was to provide a rheological characterization of these HA derivatives to asses their biomechanical compatibility with the NP tissue. To this, the rheological properties of these derivatives were studied through dynamic shear tests before and after injection through needles used in the current surgical procedure. Both HA derivatives showed a ‘gel-like’ rheological behavior similar to the native NP tissue and this behavior was not altered by injection.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3