Magnetosome yield characteristics modeling of acidithiobacillus ferrooxidans in airlift bioreactor using response surface methodology

Author:

He Shuangjun1,Yang Jiani1,Fan Xinxin1,Lu Dong2,Zhang Shuang1ORCID,Yan Lei1

Affiliation:

1. Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China

2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

Abstract

Bacterial magnetosomes had been proved to have great application potential in medicine and biotechnology. The objective of the present study was to obtain high yield of magnetosomes from Acidithiobacillus ferrooxidans ( A. ferrooxidans) BYM in an airlift bioreactor using response surface methodology (RSM). The magnetosomes from A. ferrooxidans BYM were characterized using a transmission electron microscope and scanning electron microscopy. The maximum magnetosome yield of 0.4267 mg/L was achieved at ventilation capacity of 3.6 L/min and gluconic acid concentration of 10 mmol/L at 25oC. The correlation coefficient (R2) value of 0.8676 of the obtained model suggested a good correlation between the actual and predicted magnetosome yield. The confirmation experiment confirmed that the actual magnetosome yield of 0.391 mg/L obtained were in agreement with the predicted value of 0.398 mg/L. These results suggested that RSM can be employed to find out the optimum conditions for magnetosome formation in airlift bioreactor.

Funder

Talent Training Program under Special Funds Supporting the Development of Local Universities from the Central Finance

Heilongjiang Provincial Natural Science Foundation of China

Longjiang Scholar Program of Heilongjiang Province

Strategic Priority Research Program of the Chinese Academy of Sciences

Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3