Preparation and Characterization of a Multilayer Biomimetic Scaffold for Bone Tissue Engineering

Author:

Kong Lijun1,Ao Qiang2,Wang Aijun1,Gong Kai1,Wang Xi3,Lu Guangyuan1,Gong Yandao1,Zhao Nanming1,Zhang Xiufang4

Affiliation:

1. Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology Tsinghua University, Beijing 100084, China

2. Institute of Neurological Disorder, Tsinghua University Beijing 100084, China

3. Department of Biological Egineering, Beijing Institute of Technology, Beijing 100081, China

4. Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology Tsinghua University, Beijing 100084, China,

Abstract

In scaffold based bone tissue engineering, both the pore size and the mechanical properties of the scaffold are of great importance. However, an increase in pore size is generally accompanied by a decrease in mechanical properties. In order to achieve both suitable mechanical properties and porosity, a multilayer scaffold is designed to mimic the structure of cancellous bone and cortical bone. A porous nano-hydroxyapatite—chitosan composite scaffold with a multilayer structure is fabricated and encased in a smooth compact chitosan membrane layer to prevent fibrous tissue ingrowth. The exterior tube is shown to have a small pore size (15—40 μm in diameter) for the enhancement of mechanical properties, while the core of the multilayer scaffold has a large pore size (predominantly 70—150 μm in diameter) for nutrition supply and bone formation. Compared with the uniform porous scaffold, the multilayer scaffold with the same size shows an enhanced mechanical strength and larger pore size in the center. More cells are shown to grow into the center of the multilayer scaffold in vitro than into the uniform porous scaffold under the same seeding condition. Finally, the scaffolds are implanted into a rabbit fibula defect to evaluate the osteoconductivity of the scaffold and the efficacy of the scaffold as a barrier to fibrous tissue ingrowth. At 12 weeks post operation, affluent blood vessels and bone formation are found in the center of the scaffold and little fibrous tissue is noted in the defect site.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3