Mechanical and degradation properties of small-diameter vascular grafts in an in vitro biomimetic environment

Author:

Li Xiangshun1,Zhao Huijing1

Affiliation:

1. National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China

Abstract

Small-diameter vascular grafts may fail after implantation due to various reasons from mechanical and biological aspects. In order to evaluate the mechanical durability of small-diameter vascular grafts after implantation, an artificial vascular biomimetic environment that can simulate body temperature, the liquid environment outside the vessel, and continuous blood flow and pulsatile pressure was constructed. This device can be used as a “pre-test” prior to animal experiments to explore the changes of mechanical and degradation properties in the long-term in vivo environment. At the same time, braided tube-reinforced silk fibroin/poly (l-lactic acid-co-ε-caprolactone) small-diameter vascular grafts were fabricated and tested under the biomimetic environment. Mechanical changes, including tensile properties, suture retention strength, compliance, and degradation behavior of the braided tube-reinforced poly (l-lactic acid-co-ε-caprolactone)/silk fibroin small-diameter vascular grafts were explored over various periods of time in the biomimetic environment. The results shown that under a period of testing in the in vitro biomimetic environment, the comprehensive mechanical properties (including tensile properties, suture retention strength, estimated-bursting pressure, and compliance) of small-diameter vascular grafts exhibited varying degrees of changes but that there was no obvious degradation behavior in the short term.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3