3D-printed tortuous vessels with Photodissociable and morphology-controllable ink

Author:

Wang Biling12,Zhao Pengcheng1,Zhang Peng2,Hu Jun1,Liu Yande1,Xie Mingjun3,He Yong124ORCID

Affiliation:

1. School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, China

2. Engineering for Life Group (EFL), Suzhou, China

3. Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China

4. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China

Abstract

Acute ischemic stroke (AIS) is a high mortality cerebrovascular disease associated with vessel curvature. However, the relevant mechanism remains unclear due to a lack of appropriate tortuous vascular models to investigate and validate. This study explores the combination of projection-based 3D bioprinting (PBP) with photo-stimulus-responsive techniques to fabricate a sodium alginate (SA)/acrylamide (AAM) hydrogel vascular scaffold capable of bending deformation. The coordination of Fe3+ ions with carboxylate groups in the alginate chains of the vascular scaffold acts as a molecular switch, which can be dissociated through photoreduction to enable the deformation response. Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS) results verified the deformation principle. By subjecting the scaffold to UV light exposure, Fe3+ is reduced to Fe2+ in spatially selected regions, resulting in the release of strain and subsequent deformation. Furthermore, it also controlled the degree and direction of curvature of the vessels. The cell seeding experiment verified that the vascular scaffold showed excellent biocompatibility. Overall, our approach could be used to generate an in vitro model of curved vascular pathology to investigate the pathogenesis and provide new directions for the diagnosis and treatment of vascular diseases in the future.

Funder

National Natural Science Foundation of China

National Key R&D Program of China: R & D and Demonstration of Rail Transportation System for Agricultural Equipment in Hilly and Mountainous Areas

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3