N-acetyl cysteine improves affinity of beta-tricalcium phosphate granules for cultured osteoblast-like cells

Author:

Yamada Masahiro12,Minamikawa Hajime1,Ueno Takeshi1,Sakurai Kaoru2,Ogawa Takahiro1

Affiliation:

1. Laboratory for Bone and Implant Sciences (LBIS), The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California, USA

2. Department of Removable Prosthodontics & Gerodontology, Tokyo Dental College, Mihama-ku, Chiba, Japan

Abstract

Enhancement of bone substitute's biocompatibility may accelerate healing of surrounding bone. Although widely used as a biodegradable alloplastic bone substitute for alveolar bone augmentation, the osteocompatibility of beta-tricalcium phosphate (β-TCP) remains to be proven. The adverse cellular response to biomaterials is associated with oxidative stress. We hypothesized that commercially available β-TCP granules for clinical use, caused oxidative stress and was not optimal in osteocompatibility and that application of antioxidant amino acid derivative N-acetyl cysteine (NAC) would improve osteoblastic responses to the material. Only 20% of rat calvarial osteoblasts cultured on β-TCP granules remained viable at 24 h after seeding as opposed to 90% on polystyrene. Cell death on β-TCP granules was characterized by necrosis. However, the percentage of viable osteoblasts cultured on β-TCP granules showed a 100% increase with pre-treatment with NAC. NAC restored suppressed alkaline phosphatase activity on β-TCP granules at day 5. Intracellular ROS level on β-TCP granules was 16-fold greater than that on polystyrene, but decreased by half with pre-treatment with NAC. Cell death and intracellular ROS elevation were also induced in polystyrene culture under β-TCP granules even when the osteoblasts were not in direct contact with the β-TCP granules. NAC, however, prevented induction of cell death and elevation of intracellular ROS under β-TCP granules. These results indicate that commercially available β-TCP granules negatively affect cultured osteoblastic viability and function via oxidative stress and that NAC improves these negative responses to the material. This implies enhanced bone regeneration around biodegradable calcium phosphate-based bone substitute by NAC.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3