Preparation of polyvinyl alcohol hydrogel containing chlorogenic acid microspheres and its evaluation for use in skin wound healing

Author:

Chahardoli Faezeh1,Pourmoslemi Shabnam2,Soleimani Asl Sara3,Tamri Pari1ORCID,Haddadi Rasool1

Affiliation:

1. Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

2. Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran

3. Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Chlorogenic acid (CGA) is a phenolic compound widely found in plants. Several studies have shown that CGA possesses antioxidant, antibacterial, anti-inflammatory and wound healing properties. Because of their three-dimensional structure, good permeability, excellent biocompatibility and moisturizing properties, hydrogels are ideal candidates for wound dressing. The aim of the present study was to preparation and characterization of Polyvinyl alcohol (PVA) hydrogel containing CGA microspheres and evaluation its wound healing activity. The double-emulsion solvent evaporation technique was applied for preparing the CGA containing microspheres. The microspheres were characterized using scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) and subsequently incorporated in the structure of a PVA hydrogel. The effects of prepared hydrogel on NIH3T3 cell line viability were evaluated using MTT method and wound healing activity was investigated in full thickness wound model in rabbit. SEM images showed formation of homogenous CGA microspheres with diameters in the range of 1–2 μm, embedded in the porous structure of the hydrogel. Infra-red results indicated successful incorporation of CGA microspheres into PVA hydrogel. The NIH3T3 cell viability percentage in CGA 2.5% hydrogel treated group significantly ( p < .05) increased after 24 h and 48 h comparing to control group. In vivo studies showed that CGA hydrogel significantly ( p < .001) stimulated the rate of wounds closures. Histological studies revealed that administration of CGA hydrogel significantly increased epithelialization and production of collagen fibers compared to the control group. It can be concluded that the CGA microsphere loaded PVA hydrogel has the potential for wound healing.

Funder

Vice-chancellor for Research and Technology, Hamadan University of Medical Sciences

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3