Effects of strontium-modified calcium phosphate cement combined with bone morphogenetic protein-2 on osteoporotic bone defects healing in rats

Author:

Tao Zhoushan1ORCID,Zhou Wanshu2,Jiang Yunyun1,Wu Xingjin1,Xu Zhujun1,Yang Min1,Xie Jiabing1

Affiliation:

1. Wannan Medical College First Affiliated Hospital, Yijishan Hospital, Traumatology Orthopedics, Wuhu, Anhui, China

2. The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China

Abstract

The objective of the present study was to incorporate strontium into calcium phosphate cement combined with a lower single-dose local administration of bone morphogenetic protein-2 to enhance its in vivo biodegradation and bone tissue growth. After the creation of a rodent critical-sized femoral metaphyseal bone defect, strontium-modified calcium phosphate cement was prepared by mixing sieved granules of calcium phosphate cement and 5% SrCO3 for medical use, and then strontium-modified calcium phosphate cement with dripped bone morphogenetic protein-2 solution (5 µg) was implanted into the defect of OVX rats until death at eight weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, and biomechanics. The results of our study show that a lower single-dose local administration of bone morphogenetic protein-2 combined local usage of strontium-modified calcium phosphate cement can increase the healing of defects in OVX rats. Furthermore, treatments with single-dose local administration of bone morphogenetic protein-2 and strontium-modified calcium phosphate cement showed a stronger effect on accelerating the local bone formation than calcium phosphate cement and strontium-modified calcium phosphate cement used alone. The results from our study demonstrate that combination of a lower single-dose local administration of bone morphogenetic protein-2 and strontium-modified calcium phosphate cement had an additive effect on local bone formation in osteoporosis rats.

Funder

the natural science foundation for education department of Anhui Province

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3