Exploiting Data Uncertainty for Improving the Performance of a Quantitative Analysis Model for Laser-Induced Breakdown Spectroscopy

Author:

Qin Huaiqing12,Yu Ziyu12,Lu Zhimin12,Yu Zhuliang3,Yao Shunchun12ORCID

Affiliation:

1. School of Electric Power, South China University of Technology, Guangzhou, China

2. Guangdong Province Engineering Research Center of High Efficient and Low Pollution Energy Conversion, Guangzhou, China

3. School of Automation of Science and Engineering, South China University of Technology, Guangzhou, China

Abstract

The accuracy and precision of laser-induced breakdown spectroscopy (LIBS) quantitative analysis are significantly limited by the spectral noise. Normalization and ensemble averaging of multiple spectra were often used to preprocess spectra. However, these methods cannot completely remove the spectral noise. Data uncertainty due to the irremovable spectral noise will affect LIBS quantitative analysis. Therefore, this paper proposes a method using data uncertainty to improve the performance of LIBS quantitative analysis. The proposed method uses several spectra to characterize each sample to preserve some data uncertainty in the calibration data matrix. Thus, the data uncertainty is used to optimize the calibration model for improving the toleration to the spectral signal variation. As a result, the optimized calibration model had better accuracy and robustness than the calibration model trained by conventional method. The best root mean square error of prediction (RMSEP) of the ash content of coal was 1.152% for the optimized calibration model, while that for the conventional calibration model was 1.718%. The optimized calibration model also showed a lower relative standard deviation (RSD) value of repeated predictions. Moreover, the calibration model for predicting the ash content in biomass was also optimized by the proposed method. The optimized calibration model outperformed the conventional calibration model again, which demonstrated the extensive applicability of the proposed method.

Funder

The National Natural Science Fund of China

Guangdong Basic and Applied Basic Research Foundation

Technological Innovation and Entrepreneurship Team Project of Foshan

The Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China

The Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3