Dual-Band Infrared Scheimpflug Lidar Reveals Insect Activity in a Tropical Cloud Forest

Author:

Santos Victor1ORCID,Costa-Vera Cesar1ORCID,Rivera-Parra Pamela2,Burneo Santiago3,Molina Juan1ORCID,Encalada Diana4,Salvador Jacobo5,Brydegaard Mikkel56

Affiliation:

1. Departmento de Física, Escuela Politécnica Nacional, Quito

2. Departmento de Biología, Escuela Politécnica Nacional, Quito

3. Pontificia Universidad Católica del Ecuador, Quito, Ecuador

4. Departmento de Economía, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja, Ecuador

5. Department of Physics, Lund University, Lund, Sweden

6. Norsk Elektro Optikk AS, Oslo, Norway

Abstract

We describe an entomological dual-band 808 and 980 nm lidar system which has been implemented in a tropical cloud forest (Ecuador). The system was successfully tested at a sample rate of 5 kHz in a cloud forest during challenging foggy conditions (extinction coefficients up to 20 km–1). At times, the backscattered signal could be retrieved from a distance of 2.929 km. We present insect and bat observations up to 200 m during a single night with an emphasis on fog aspects, potentials, and benefits of such dual-band systems. We demonstrate that the modulation contrast between insects and fog is high in the frequency domain compared to intensity in the time domain, thus allowing for better identification and quantification in misty forests. Oscillatory lidar extinction effects are shown in this work for the first time, caused by the combination of dense fog and large moths partially obstructing the beam. We demonstrate here an interesting case of a moth where left- and right-wing movements induced oscillations in both intensity and pixel spread. In addition, we were able to identify the dorsal and ventral sides of the wings by estimating the corresponding melanization with the dual-band lidar. We demonstrate that the wing beat trajectories in the dual-band parameter space are complementary rather than covarying or redundant, thus a dual-band entomological lidar approach to biodiversity studies is feasible in situ and endows species specificity differentiation. Future improvements are discussed. The introduction of these methodologies opens the door to a wealth of possible experiments to monitor, understand, and safeguard the biological resources of one of the most biodiverse countries on Earth.

Funder

H2020 European Research Council

Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3