Binary Complementary Filters for Compressive Raman Spectroscopy

Author:

Rehrauer Owen G.1,Dinh Vu C.2,Mankani Bharat R.1,Buzzard Gregery T.3,Lucier Bradley J.4,Ben-Amotz Dor1

Affiliation:

1. Department of Chemistry, Purdue University, West Lafayette, IN, USA

2. Program in Computational Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, USA

3. Department of Mathematics, Purdue University, West Lafayette, IN, USA

4. Department of Mathematics and Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract

The previously described optimized binary compressive detection (OB-CD) strategy enables fast hyperspectral Raman (and fluorescence) spectroscopic analysis of systems containing two or more chemical components. However, each OB-CD filter collects only a fraction of the scattered photons and the remainder of the photons are lost. Here, we present a refinement of OB-CD, the OB-CD2 strategy, in which all of the collected Raman photons are detected using a pair of complementary binary optical filters that direct photons of different colors to two photon counting detectors. The OB-CD2 filters are generated using a new optimization algorithm described in this work and implemented using a holographic volume diffraction grating and a digital micromirror device (DMD) whose mirrors are programed to selectively direct photons of different colors either to one or the other photon-counting detector. When applied to pairs of pure liquids or two-component solid powder mixtures, the resulting OB-CD2 strategy is shown to more accurately estimate Raman scattering rates of each chemical component, when compared to the original OB-CD, thus facilitating chemical classification at speeds as fast as 3 μs per measurement and the collection of Raman images in under a second.

Funder

Simons Foundation

Office of Naval Research

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3