A Novel Compression Method of Spectral Data Matrix Based on the Low-Rank Approximation and the Fast Fourier Transform of the Singular Vectors

Author:

Dubrovkin Joseph1ORCID

Affiliation:

1. Multidisciplinary Department, Western Galilee College, Acre, Israel

Abstract

Storage, processing, and transfer of huge matrices are becoming challenging tasks in the process analytical technology and scientific research. Matrix compression can solve these problems successfully. We developed a novel compression method of spectral data matrix based on its low-rank approximation and the fast Fourier transform of the singular vectors. This method differs from the known ones in that it does not require restoring the low-rank approximated matrix for further Fourier processing. Therefore, the compression ratio increases. A compromise between the losses of the accuracy of the data matrix restoring and the compression ratio was achieved by selecting the processing parameters. The method was applied to multivariate chemometrics analysis of the cow milk for determining fat and protein content using two data matrices (the file sizes were 5.7 and 12.0 MB) restored from their compressed form. The corresponding compression ratios were about 52 and 114, while the loss of accuracy of the analysis was less than 1% compared with processing of the non-compressed matrix. A huge, simulated matrix, compressed from 400 MB to 1.9 MB, was successfully used for multivariate calibration and segment cross-validation. The data set simulated a large matrix of 10 000 low-noise infrared spectra, measured in the range 4000–400 cm−1 with a resolution of 0.5 cm−1. The corresponding file was compressed from 262.8 MB to 19.8 MB. The discrepancies between original and restored spectra were less than the standard deviation of the noise. The method developed in the article clearly demonstrated its potential for future applications to chemometrics-enhanced spectrometric analysis with limited options of memory size and data transfer rate. The algorithm used the standard routines of Matlab software.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3