Sensitive Detection of Rhodamine B in Condiments Using Surface-Enhanced Resonance Raman Scattering (SERRS) Silver Nanowires as Substrate

Author:

Zhang Lixia1,Li Peng2,Luo Lan1,Bu Xiangfeng1,Wang Xiaolei2,Zhao Bing2,Tian Yuan1

Affiliation:

1. College of Chemistry, Jilin University, Changchun, China

2. State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China

Abstract

In this paper, a facile large-scale preparation of surface-enhanced resonance Raman scattering (SERRS) substrates for the determination of Rhodamine B (RhB) based on silver nanowires (Ag NWs) has been developed. The morphology, structure, and properties of as-prepared Ag NWs are characterized using ultraviolet–visible (UV-Vis) spectroscopy, field emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD), respectively. Ag NWs were assembled onto glass slides through a self-assembly method. Moreover, in our experiment, as-prepared Ag NWs@glass were used as a SERRS substrate to detect RhB at the excitation wavelength of 532 nm. Experimental conditions such as pH value and soaking time on SERRS performance were studied and optimized. Under the optimized conditions, the SERRS intensity at 1648 cm−1 exhibited a linear relationship with the concentration of RhB in the range of 1.0 × 10−9–1.0 × 10−5 mol L−1 and detection limit (signal-to-noise ratio [S/N] = 3) is as low as 0.3 nmol L−1. The corresponding correlation coefficient of the linear equation was 0.996. This method based on Ag NWs@glass for the detection of RhB in three kinds of condiment was investigated. The limits of detection (LODs) for RhB were 0.35 µg/g in chili powder, 0.14 µg/g in chili sauce, and 0.02 µg/g in Chinese prickly ash. The relative standard deviations (RSD) were between 2.18% and 4.56% (n = 3) and recoveries at three levels were in the range of 80.0–98.7% for different spiked food products. Moreover, the results showed that the proposed method was sensitive, convenient, and feasible for the determination of RhB in condiments.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3