Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Analysis of Partially Miscible PMMA–PEG Blends Using Two-Dimensional Disrelation Mapping

Author:

Shinzawa Hideyuki12,Mizukado Junji1,Kazarian Sergei G.2

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Japan

2. Department of Chemical Engineering, Imperial College London, London, UK

Abstract

A novel technique called disrelation spectroscopic imaging describes the process of identifying an area where a coordinated or out-of-phase change in pattern of spectral absorbance occurs. Disrelation mapping can be viewed as a spatial filter based on the well-established two-dimensional (2D) correlation function to highlight specific areas where disrelated variation occurs between ν1 and ν2. Disrelation intensity develops only if the spectral absorbance measured at ν1 and ν2 vary out of phase with each other within a specific spatial area. The disrelation mapping locates regions where absorbance varies in a dissimilar manner because of the contribution from species of different physical or chemical origins. Consequently, it becomes possible to probe onset of molecular interactions or presence of intermediate forms between components, which is not fully detected by the conventional visualizations based on a single wavenumber. Data analysis using disrelation mapping applied to Fourier transform infrared (FT-IR) spectroscopic images is presented in this study. Data sets of FT-IR spectroscopic images of blends of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were subjected to the disrelation mapping. It was found that the disrelation intensity between 1730 and 1714 cm–1 becomes especially acute around the spatial boundary between PMMA and PEG domains within the studied blend sample. Thus the band at 1730 cm–1 most likely represents the C=O stretching mode of the C=O···H–O species due to the intermolecular hydrogen bonding between PMMA and PEG. The appearance of such disrelation is more noticeable in the PEG-rich region, for the PEG with low molecular weight. Consequently, it suggests that the blends of PMMA and PEG are partially miscible at the molecular level and these intermolecular interactions are affected by the quantity of the terminal –OH groups of the PEG.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3