Use of Monte Carlo Simulation as a Tool for the Nondestructive Energy Dispersive X-ray Fluorescence (ED-XRF) Spectroscopy Analysis of Archaeological Copper-Based Artifacts from the Chalcolithic Site of Perdigões, Southern Portugal

Author:

Bottaini Carlo E.12ORCID,Brunetti Antonio3,Montero-Ruiz Ignacio4,Valera Antonio5,Candeias Antonio1,Mirão José1

Affiliation:

1. HERCULES Laboratory, University of Évora, Évora, Portugal

2. CIDEHUS, University of Évora, Évora, Portugal

3. Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell’Informazione, Università di Sassari, Sassari, Italy

4. Instituto de Historia-CSIC, Madrid, Spain

5. Era-Arqueologia SA, Cruz Quebrada, Portugal

Abstract

This work is part of a broader research line that aims to develop and implement a nondestructive methodology for the chemical characterization of archaeological metals based on a protocol that combines energy dispersive X-ray fluorescence spectrometry (ED-XRF) with a Monte Carlo (MC) simulation algorithm. In this paper, the ED-XRF-MC protocol has been applied to estimate the chemical composition of a selected group of 26 copper-based artifacts and fragments recovered at Perdigões, one of the larger Chalcolithic sites of southwest Iberia. All the analyzed artifacts have a multilayered structure composed of the alloy substrate and of a superficial layer common in each metal buried for hundreds of years and consisting of the patina mixed with soil. Due to the difficulty in determining the quantitative composition of these alloys in the presence of this complex patina/encrustation layer, the spectrometric protocol applied in this paper allows to simulate and to determine the composition of the bulk alloy without any prior removal of the overlying corrosion patina layer and soil-derived crust, even in the presence of rough and irregular surfaces, thus preserving the physical integrity of the artifacts. The overall results obtained with the ED-XRF-MC protocol indicates that the artifacts from Perdigões are almost pure coppers with a low amount of arsenic (<3.0 wt%) and reduced concentration of elements such as Pb, Bi, and Sb, in agreement with the third millennium metallurgy known in southwestern Iberia. Also based on previously theoretical–experimental studies, the data presented in this paper show how the applied analytical methodology can be a fast and completely nondestructive analytical tool reliable for routine and large-scale chemical analysis of archaeological metals, thus representing a major advance to be broadly applied within the field of cultural heritage studies.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3