Affiliation:
1. Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton, Australia
2. Department of Chemistry, University of Bath, Bath, UK
3. Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
Abstract
Malaria is considered to be one of the most catastrophic health issues in the whole world. Vibrational spectroscopy is a rapid, robust, label-free, inexpensive, highly sensitive, nonperturbative, and nondestructive technique with high diagnostic potential for the early detection of disease agents. In particular, the fingerprinting capability of attenuated total reflection spectroscopy is promising as a point-of-care diagnostic tool in resource-limited areas. However, improvements are required to expedite the measurements of biofluids, including the drying procedure and subsequent cleaning of the internal reflection element to enable high throughput successive measurements. As an alternative, we propose using an inexpensive coverslip to reduce the sample preparation time by enabling multiple samples to be collectively dried together under the same temperature and conditions. In conjunction with partial least squares regression, attenuated total reflection spectroscopy was able to detect and quantify the parasitemia with root mean square error of cross-validation and R2 values of 0.177 and 0.985, respectively. Here, we characterize an inexpensive, disposable coverslip for the high throughput screening of malaria parasitic infections and thus demonstrate an alternative approach to direct deposition of the sample onto the internal reflection element.
Funder
Australian Research Council
Subject
Spectroscopy,Instrumentation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献