A Practical Procedure for Analysis of Lead Isotopes in Bivalve Shells Using Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS)

Author:

Pessoa Igor12ORCID,Cunha Bruno3,Coelho Marco1,Romero Luiz Felipe1,Tavares Armando Dias1,Antonioli Luzia1,Moterani Ana Carolina1

Affiliation:

1. Rio de Janeiro State University, Rio de Janeiro, Brazil

2. University of California, Santa Cruz, CA, USA

3. Institute of Geosciences, University of São Paulo, São Paulo, Brazil

Abstract

Lead, like other trace elements, is incorporated in the growing bands of bivalve shells. The chemicals stored into the shells can provide valuable information about seawater conditions during the period of shell formation. In this study, we present a practical approach to determine Pb isotopic signatures in bivalve shells as a tool for evaluating lead pollution in coastal waters. To demonstrate the applicability of the method, Pb isotopic fingerprinting in bivalve shell layers were investigated using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Lead isotope ratios (208Pb/206Pb and 206Pb/207Pb) were measured along distinct sections of the maximum growth axis of the shells. Calibration and quantification of Pb isotopes were performed using NIST 612 as reference material. Our results demonstrated that Pb isotope ratios in the shells ranged from 1.143 to 1.201 for 206Pb/207Pb and from 2.061 to 2.161 for 208Pb/206Pb. The isotopic signatures recorded in the sample shells correspond to similar ranges of Pb signatures reported for marine sediments from the same study area. In general, this work shows that LA-MC-ICP-MS is a suitable technique for determining spatially resolved lead isotopic signatures in bivalve shells and that it can be used to estimate the origin of Pb pollution in aquatic environments.

Funder

Financiadora de Estudos e Projetos

CoordenaÃ&z.hfl;§Ã&z.hfl;£o de AperfeiÃ&z.hfl;§oamento de Pessoal de NÃ&z.hfl;Â‐vel Superior

Conselho Nacional de Desenvolvimento CientÃ&z.hfl;Â‐fico e TecnolÃ&z.hfl;Âgico

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3