Deep-Learning-Enabled High-Fidelity Absorbance Spectra from Distorted Dual-Comb Absorption Spectroscopy for Gas Quantification Analysis

Author:

Huang Chao1ORCID,Zhang Tianyou2,Kong Xiangchen1,Li Yan1,Wei Haoyun1

Affiliation:

1. State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China

2. School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China

Abstract

Dual-comb absorption spectroscopy has been a promising technique in laser spectroscopy due to its intrinsic advantages over broad spectral coverage, high resolution, high acquisition speed, and frequency accuracy. However, two primary challenges, including etalon effects and complex baseline extraction, still severely hinder its implementation in recovering absorbance spectra and subsequent quantification analysis. In this paper, we propose a deep learning enabled processing framework containing etalon removal and baseline extraction modules to obtain absorbance spectra from distorted dual-comb absorption spectroscopy. The etalon removal module utilizes a typical U-net model, and the baseline extraction module consists of a modified U-net model with physical constraint and an adaptive iteratively reweighted penalized least squares method serving as refinement. The training datasets combine experimental baselines and simulated gas absorption with different concentrations, fully exploiting prior information on gas absorption features from the HITRAN database. In the simulated and experimental test, the CO2 absorbance spectrum covering 25 cm–1 shows high consistency with the HITRAN database, of which the mean absolute error is less than 1% of the maximum absorbance value, and the retrieved concentration has a relative error under 2%, outperforming traditional approaches and indicating the potential practicality of our data processing framework. Hopefully, with a larger network volume and proper datasets, this processing framework can be extended to precise quantification analysis in more comprehensive applications such as atmospheric measurement and industrial monitoring.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3