Affiliation:
1. State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
Abstract
The Raman background arising from optical fiber materials poses a critical problem for fiber optic surface-enhanced Raman spectroscopy (SERS). A novel filter is developed to fit the optical fiber background from the measured SERS spectrum of the target sample. The general model of the filter is built by incorporating a weighted term of matching the similarity between the estimated background spectrum and the measured background spectrum into the classic Savitzky–Golay (SG) smoothing filter model. Through respectively selecting Euclidean cosine coefficient (ECos) and Pearson correlation coefficient (PCor) as the similarity index, two different models of the weighted SG smoothing filter are derived and named as SG-ECos and SG-PCor accordingly. Furthermore, the algorithm is presented, implemented, successfully applied to experimentally measured SERS spectra of rhodamine 6G and crystal violet, and validated with mathematically simulated Raman spectra. Experimental and simulation results show that the SG-ECos filter is effective, fast, flexible, and of certain anti-noise capability in background fitting. It is suggested that the proposed filter may be also applicable for other Raman spectra measurements to remove spectral contaminants originated from sampling substrates such as glass slides.
Funder
National Basic Research Program of China
Innovative Research Team in University
National Natural Science Foundation of China
Subject
Spectroscopy,Instrumentation
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献