Temperature-Induced Chemical Changes in Lubricant Automotive Oils Evaluated Using Raman Spectroscopy

Author:

de M. Bezerra Andressa Cristina1,de A. Coelho Nelize Maria1,Bertelli Felipe1,Pacheco Marcos Tadeu T.12,Silveira Landulfo12ORCID

Affiliation:

1. Universidade Santa Cecília – UNISANTA, Santos, SP, Brazil

2. Centre for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM, SP, Brazil

Abstract

Automotive engine lubricating oils are not only intended to reduce friction between parts, but also act on the cooling of motor components and protection of metals against corrosion. To improve its properties and efficiency, additives are added to the base oil for different goals. However, over time of use, external factors modify its properties, such as the engine operating temperature, the frictional force between parts, the mixture of this oil with fuel before burning and with combustion products, causing loss of their efficiency. This work aimed to evaluate, with Raman spectroscopy technique, the temperature-induced changes related to degradation of mineral, semi-synthetic and synthetic automotive lubricating oils. Samples being subject to periodic heating cycle were kept to average temperature of 133 ℃, considering 8 h per day, for six days, until complete 48 h of heating. By analyzing the Raman spectra, it was possible to identify common peaks between the three types of oils and changes caused by heating cycles. Principal components analysis showed that the synthetic oil degraded in less extent than the semi-synthetic one, and this one degraded less than the mineral oil. Spectral models to predict the heating time based on the spectral variations identified using principal components analysis and the regression done using partial least squares, using the heating time as independent variable and the spectral features as dependent variables, was able to predict the heating time for each of oil types with high correlation and prediction error ( r > 0.97 and error <4.0 h) for both principal components analysis and partial least squares regression models. Raman technique was able to identify chemical changes resulting from the heating of lubricant oils and to correlate these changes with the heating time, thus becoming a technique of interest for the preventive maintenance area.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3