Mechanical properties of Acropora cervicornis aragonite skeleton by using multiscale models based on micro-CT data

Author:

Altintas Gökhan1ORCID,Cankal Dilan2ORCID,Kilic Gokhan3,Ergun Sefa1ORCID

Affiliation:

1. Engineering and Natural Sciences Faculty, Mechanics Division, Manisa Celal Bayar University, Manisa, Turkey

2. Engineering and Natural Sciences Faculty, Materials Division, Manisa Celal Bayar University, Manisa, Turkey

3. Civil Engineering Department, Engineering Faculty, Izmir University of Economics, Izmir, Turkey

Abstract

Corals, crucial for ocean ecosystems, face threats such as ocean acidification from global warming and pollution, which weaken their skeletons. This study focuses on Acropora cervicornis, known for its hard but fragile structure, requiring strength and flexibility to withstand the forces from climate-driven atmospheric events. An experiment using uniaxial mechanical loading from the initial stage to complete failure at a very low strain rate (1.2821 × 10−5 s−1) was conducted to ascertain the mechanical properties of corals. The geometric properties and Young's modulus were analysed based on various levels of micro-architectural details from micro-CT data, with resolution values influencing the measurements. The highest resolution model showed a Young's modulus approaching 22.265 GPa and porosity at 40.448%. Calibration of finite element models incorporating micro-architectural details enabled a precise comparison of parameter effects and more accurate results, highlighting the significance of resolution in modelling coral mechanical properties.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3