Differential biomarker signatures in unipolar and bipolar depression: A machine learning approach

Author:

Wollenhaupt-Aguiar Bianca12ORCID,Librenza-Garcia Diego123,Bristot Giovana24,Przybylski Laura5,Stertz Laura24,Kubiachi Burque Renan2,Ceresér Keila Mendes23,Spanemberg Lucas3678,Caldieraro Marco Antônio36,Frey Benicio N19,Fleck Marcelo P3610,Kauer-Sant’Anna Marcia23410,Passos Ives Cavalcante2310,Kapczinski Flavio12310

Affiliation:

1. Department of Psychiatry and Behavioural Neurosciences, McMaster University and St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada

2. Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil

3. Graduation Program in Psychiatry, Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

4. Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

5. Graduation Program in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil

6. Mood Disorders Program, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

7. Neuroscience Training Center, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

8. Section of Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

9. Mood Disorders Program and Women’s Health Concerns Clinic, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada

10. Department of Legal Medicine and Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Abstract

Objective: This study used machine learning techniques combined with peripheral biomarker measurements to build signatures to help differentiating (1) patients with bipolar depression from patients with unipolar depression, and (2) patients with bipolar depression or unipolar depression from healthy controls. Methods: We assessed serum levels of interleukin-2, interleukin-4, interleukin-6, interleukin-10, tumor necrosis factor-α, interferon-γ, interleukin-17A, brain-derived neurotrophic factor, lipid peroxidation and oxidative protein damage in 54 outpatients with bipolar depression, 54 outpatients with unipolar depression and 54 healthy controls, matched by sex and age. Depressive symptoms were assessed using the Hamilton Depression Rating Scale. Variable selection was performed with recursive feature elimination with a linear support vector machine kernel, and the leave-one-out cross-validation method was used to test and validate our model. Results: Bipolar vs unipolar depression classification achieved an area under the receiver operating characteristics (ROC) curve (AUC) of 0.69, with 0.62 sensitivity and 0.66 specificity using three selected biomarkers (interleukin-4, thiobarbituric acid reactive substances and interleukin-10). For the comparison of bipolar depression vs healthy controls, the model retained five variables (interleukin-6, interleukin-4, thiobarbituric acid reactive substances, carbonyl and interleukin-17A), with an AUC of 0.70, 0.62 sensitivity and 0.7 specificity. Finally, unipolar depression vs healthy controls comparison retained seven variables (interleukin-6, Carbonyl, brain-derived neurotrophic factor, interleukin-10, interleukin-17A, interleukin-4 and tumor necrosis factor-α), with an AUC of 0.74, a sensitivity of 0.68 and 0.70 specificity. Conclusion: Our findings show the potential of machine learning models to aid in clinical practice, leading to more objective assessment. Future studies will examine the possibility of combining peripheral blood biomarker data with other biological data to develop more accurate signatures.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundo de Incentivo a Pesquisas e Eventos

Publisher

SAGE Publications

Subject

Psychiatry and Mental health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3