Good Fit Is Weak Evidence of Replication: Increasing Rigor Through Prior Predictive Similarity Checking

Author:

Bonifay Wes1ORCID,Winter Sonja D.1,Skoblow Hanamori F.1ORCID,Watts Ashley L.2

Affiliation:

1. University of Missouri, Columbia, USA

2. Vanderbilt University, Nashville, TN, USA

Abstract

Replication provides a confrontation of psychological theory, not only in experimental research, but also in model-based research. Goodness of fit (GOF) of the original model to the replication data is routinely provided as meaningful evidence of replication. We demonstrate, however, that GOF obscures important differences between the original and replication studies. As an alternative, we present Bayesian prior predictive similarity checking: a tool for rigorously evaluating the degree to which the data patterns and parameter estimates of a model replication study resemble those of the original study. We apply this method to original and replication data from the National Comorbidity Survey. Both data sets yielded excellent GOF, but the similarity checks often failed to support close or approximate empirical replication, especially when examining covariance patterns and indicator thresholds. We conclude with recommendations for applied research, including registered reports of model-based research, and provide extensive annotated R code to facilitate future applications of prior predictive similarity checking.

Funder

Institute of Education Sciences

National Institute on Alcohol Abuse and Alcoholism

Publisher

SAGE Publications

Reference74 articles.

1. American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.).

2. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.).

3. Sample size planning for replication studies: The devil is in the design.

4. Multiple-Group Factor Analysis Alignment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3