A model for space-time threshold exceedances with an application to extreme rainfall

Author:

Bortot Paola1,Gaetan Carlo2

Affiliation:

1. Dipartimento di Scienze Statistiche, Università di Bologna, Italy

2. Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari, Venezia, Italy

Abstract

In extreme value studies, models for observations exceeding a fixed high threshold have the advantage of exploiting the available extremal information while avoiding bias from low values. In the context of space-time data, the challenge is to develop models for threshold exceedances that account for both spatial and temporal dependence. We address this issue through a modelling approach that embeds spatial dependence within a time series formulation. The model allows for different forms of limiting dependence in the spatial and temporal domains as the threshold level increases. In particular, temporal asymptotic independence is assumed, as this is often supported by empirical evidence, especially in environmental applications, while both asymptotic dependence and asymptotic independence are considered for the spatial domain. Inference from the observed exceedances is carried out through a combination of pairwise likelihood and a censoring mechanism. For those model specifications for which direct maximization of the censored pairwise likelihood is unfeasible, we propose an indirect inference procedure which leads to satisfactory results in a simulation study. The approach is applied to a dataset of rainfall amounts recorded over a set of weather stations in the North Brabant province of the Netherlands. The application shows that the range of extremal patterns that the model can cover is wide and that it has a competitive performance with respect to an alternative existing model for space-time threshold exceedances.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference55 articles.

1. Hierarchical Space-Time Modeling of Asymptotically Independent Exceedances With an Application to Precipitation Data

2. A flexible dependence model for spatial extremes

3. A Latent Process Model for Temporal Extremes

4. Models for the extremes of Markov chains

5. Brandsma T (2014) Comparison of automatic and manual precipitation networks in the Netherlands (TR-347), KNMI. De Bilt. URL https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR347.pdf (last accessed 5 May 2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3