Bayesian adjustment for measurement error in an offset variable in a Poisson regression model

Author:

Zhang Kangjie1,Liu Juxin2,Liu Yang3,Zhang Peng4,Carroll Raymond J.56

Affiliation:

1. Everest Clinical Research, Markham, Ontario, Canada

2. Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

3. Upstart Network Inc., San Carlos, California, USA

4. Department of Statistics, Zhejiang University, Hangzhou, China

5. Department of Statistics, Texas A&M University, College Station, Texas, USA

6. School of Mathematical and Physical Sciences, University of Technology, Sydney, Broadway, NSW, Australia

Abstract

Fatal car crashes are the leading cause of death among teenagers in the USA. The Graduated Driver Licensing (GDL) programme is one effective policy for reducing the number of teen fatal car crashes. Our study focuses on the number of fatal car crashes in Michigan during 1990–2004 excluding 1997, when the GDL started. We use Poisson regression with spatially dependent random effects to model the county level teen car crash counts. We develop a measurement error model to account for the fact that the total teenage population in the county level is used as a proxy for the teenage driver population. To the best of our knowledge, there is no existing literature that considers adjustment for measurement error in an offset variable. Furthermore, limited work has addressed the measurement errors in the context of spatial data. In our modelling, a Berkson measurement error model with spatial random effects is applied to adjust for the error-prone offset variable in a Bayesian paradigm. The Bayesian Markov chain Monte Carlo (MCMC) sampling is implemented in rstan. To assess the consequence of adjusting for measurement error, we compared two models with and without adjustment for measurement error. We found the effect of a time indicator becomes less significant with the measurement-error adjustment. It leads to our conclusion that the reduced number of teen drivers can help explain, to some extent, the effectiveness of GDL.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3