Principal trade-off analysis

Author:

Strang Alexander1ORCID,Sewell David2,Kim Alexander3,Alcedo Kevin2,Rosenbluth David2

Affiliation:

1. University of California Berkeley, Chicago, IL, USA

2. Lockheed Martin Artificial Intelligence Center, Manassas, USA

3. Kroll Bond Rating Agency, New York, NY, USA

Abstract

How are the advantage relations between a set of agents playing a game organized and how do they reflect the structure of the game? In this paper, we illustrate ‘Principal Trade-off Analysis’ (PTA), a decomposition method that embeds games into a low-dimensional feature space. We argue that the embeddings are more revealing than previously demonstrated by developing an analogy to Principal Component Analysis (PCA). PTA represents an arbitrary two-player zero-sum game as linear combination of simple games via the projection of policy profiles into orthogonal 2D feature planes. We show that the feature planes represent unique strategic trade-offs and truncation of the sequence provides insightful model reduction and visualization. We demonstrate the validity of PTA on a quartet of games (Kuhn poker, RPS + 2, Blotto and Pokemon). In Kuhn poker, PTA clearly identifies the trade-off between bluffing and calling. In Blotto, PTA identifies game symmetries and specifies strategic trade-offs associated with distinct win conditions. These symmetries reveal limitations of PTA unaddressed in previous work. For Pokemon, PTA recovers clusters that naturally correspond to Pokemon types, correctly identifies the designed trade-off between those types, and discovers a rock-paper-scissor (RPS) cycle in the Pokemon generation type – all absent any specific information except game outcomes.

Funder

Defense Advanced Research Projects Agency

Publisher

SAGE Publications

Reference50 articles.

1. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play

2. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker

3. Grandmaster level in StarCraft II using multi-agent reinforcement learning

4. Silver D, Hubert T, Schrittwieser J, et al. AlphaZero: Shedding new light on the grand games of chess, shogi and Go. DeepMind blog, 2018, https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3