A survey of surveys on the use of visualization for interpreting machine learning models

Author:

Chatzimparmpas Angelos1ORCID,Martins Rafael M.1,Jusufi Ilir1,Kerren Andreas1ORCID

Affiliation:

1. Department of Computer Science and Media Technology, Linnaeus University, Växjö, Sweden

Abstract

Research in machine learning has become very popular in recent years, with many types of models proposed to comprehend and predict patterns and trends in data originating from different domains. As these models get more and more complex, it also becomes harder for users to assess and trust their results, since their internal operations are mostly hidden in black boxes. The interpretation of machine learning models is currently a hot topic in the information visualization community, with results showing that insights from machine learning models can lead to better predictions and improve the trustworthiness of the results. Due to this, multiple (and extensive) survey articles have been published recently trying to summarize the high number of original research papers published on the topic. But there is not always a clear definition of what these surveys cover, what is the overlap between them, which types of machine learning models they deal with, or what exactly is the scenario that the readers will find in each of them. In this article, we present a meta-analysis (i.e. a “survey of surveys”) of manually collected survey papers that refer to the visual interpretation of machine learning models, including the papers discussed in the selected surveys. The aim of our article is to serve both as a detailed summary and as a guide through this survey ecosystem by acquiring, cataloging, and presenting fundamental knowledge of the state of the art and research opportunities in the area. Our results confirm the increasing trend of interpreting machine learning with visualizations in the past years, and that visualization can assist in, for example, online training processes of deep learning models and enhancing trust into machine learning. However, the question of exactly how this assistance should take place is still considered as an open challenge of the visualization community.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent systems in healthcare: A systematic survey of explainable user interfaces;Computers in Biology and Medicine;2024-09

2. Tertiary Review on Explainable Artificial Intelligence: Where Do We Stand?;Machine Learning and Knowledge Extraction;2024-08-30

3. A User-centered Framework for Human-AI Co-creativity;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Visualization for Trust in Machine Learning Revisited: The State of the Field in 2023;IEEE Computer Graphics and Applications;2024-05

5. Anomaly diagnosis of connected autonomous vehicles: A survey;Information Fusion;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3