Visualisation of hierarchical multivariate data: Categorisation and case study on hate speech

Author:

Kavaz Ecem1ORCID,Puig Anna12,Rodríguez Inmaculada13,Chacón Reyes1,De-La-Paz David1,Torralba Adrià1,Nofre Montserrat14ORCID,Taule Mariona14

Affiliation:

1. Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Barcelona, Spain

2. Institut of Complex Systems (UBICS), Universitat de Barcelona (UB), Spain

3. Institut de Matemàtica UB (IMUB), Universitat de Barcelona (UB), Spain

4. Facultat de Filologia i Comunicació, Universitat de Barcelona (UB), Spain

Abstract

Multivariate hierarchical data has an important role in many applications. To find the best visualisation that best fits a concrete data is crucial to explore and understand the relationships between the data. This paper proposes a categorisation – Elongated and Compact – of hierarchical data based on the inner shapes of the hierarchies, that is the connectivity degree of the internal nodes, the number of nodes, etc, that can be applied to any hierarchical data. Based on this taxonomy, we explore implicit and explicit layouts – Tree, Circle Packing, Force and Radial – to provide users with a complete view of the data. We hypothesise that Tree and Circle Packing fit with Elongated structures, and Force and Radial fit with Compact ones. In addition, we cluster multivariate features to embed them in the hierarchical layouts. Especially, we propose two different glyphs – one-by-one and all-in-one, and we bet for the one-by-one glyphs as the most suitable for showing the distribution of several features along with the hierarchical structures. To validate our hypotheses, we conducted a user study with 35 participants using a hate speech annotated corpus. This corpus comes from 4359 comments posted in online Spanish newspapers. The results indicated that users preferred the Tree layout over the other three layouts (Circle, Force, Radial) with both types of structures (EC and CC). However, when we focused the analysis only on Radial and Force layouts, both of them scored significantly higher with Compact than with Elongated data. Moreover, participants scored the one-by-one glyph higher than the all-in-one glyph, but the difference was not significant.

Publisher

SAGE Publications

Subject

Computer Vision and Pattern Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3