Before reliable near infrared spectroscopic analysis - the critical sampling proviso. Part 1: Generalised theory of sampling

Author:

Esbensen Kim H1,Abu-Khalaf Nawaf2ORCID

Affiliation:

1. KHE Consulting, Aalborg University (AAU), Denmark; Geological Survey of Denmark and Greenland (GEUS); Université du Québec à Chicoutimi (UQAC), Quebec; University of South-Eastern Norway (USN); Recinto Universitario de Mayaguez, Puerto Rico

2. Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm, Palestine

Abstract

Non-representative sampling of materials, lots and processes intended for near infrared (NIR) analysis is often contributing hidden additions to the full Measurement Uncertainty (MUtotal = TSE + TAENIR). The Total Sampling Error (TSE) can dominate over the Total Analytical Error (TAENIR) by factors ranging from 5 to 10 to even 25 times, depending on material heterogeneity and the specific sampling procedures employed to produce the minuscule aliquot, which is the only material analysed. This review (Parts 1 and 2), extensively referenced with easily available complementing literature, presents a brief of all sampling uncertainty elements in the “lot-to-aliquot” pathway, which must be identified and correctly managed (eliminated or maximally reduced) in order to achieve, and to be able to document, fully minimised MUtotal. The more irregular and pervasive the heterogeneity, the higher the number of increments needed to reach ‘fit-for-purpose representativity’. A particular focus is necessary regarding the sampling bias, which is fundamentally different from the well-known analytical bias. Whereas the latter can easily be subjected to bias correction, the sampling bias is non-correctable by any posteori means, notably not by chemometrics, nor statistics. Instead, all sampling operations must be designed to exclude the so-called Incorrect Sampling Errors (ISE), which are the hidden bias-generating agents. The key element in this endeavour is representative sampling and sub-sampling before analysis, as laid out by the Theory of Sampling (TOS), which is presented here in a novel compact fashion along with a complement of selected examples and demonstrations. TOS includes a safeguard facility, termed the Replication Experiment (RE), which enables estimation of the total sampling- plus-analysis uncertainty level (MUtotal) associated with NIR analysis (the RE is, for practical and logistical reasons, found in Part 2). Neglecting the TSE effects from the before-analysis domain is lack of due diligence. TOS to the fore!

Publisher

SAGE Publications

Subject

Spectroscopy

Reference17 articles.

1. Gy P. Sampling for Analytical Purposes. Chichester, UK: Wiley, 1998, p. 153.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3