Image-Based Profiling Can Discriminate the Effects of Inhibitors on Signaling Pathways under Differential Ligand Stimulation

Author:

Tanabe Kenji1ORCID,Inagaki Ayane1,Henmi Yuji1,Satake Masanobu2

Affiliation:

1. Medical Research Institute, Tokyo Women’s Medical University, Tokyo, Japan

2. Department of Nursing, Sendai Akamon College, Sendai, Japan

Abstract

A major advantage of image-based phenotypic profiling of compounds is that numerous image features can be sampled and quantitatively evaluated in an unbiased way. However, since this assay is a discovery-oriented screening, it is difficult to determine the optimal experimental setup in advance. In this study, we examined whether variable cellular stimulation affects the efficacy of the image-based profiling of compounds. Seven different epidermal growth factor receptor (EGFR) ligands were used, and the expression of EGFR signaling molecules was monitored at various time points. Significant quantitative differences in image features were detected among the differentially treated samples. Next, 14 different compounds that affect EGFR signaling were profiled. Nearly half of the compounds were classified into distinct clusters, irrespective of differential ligand stimulation. The results suggest that image-based phenotypic profiling is quite robust in its ability to predict compound interaction with its target. Although this method will have to be validated in other experimental systems, the robustness of image-based compound profiling demonstrated in this work provides a valid basis for further study and its extended application.

Funder

Japan Society for the Promotion of Science

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3