Discovery and Characterization of Chemical Compounds That Inhibit the Function of Aspartyl-tRNA Synthetase from Pseudomonas aeruginosa

Author:

Corona Araceli1,Palmer Stephanie O.1,Zamacona Regina1,Mendez Benjamin1,Dean Frank B.1,Bullard James M.1

Affiliation:

1. Chemistry Department, The University of Texas–RGV, Edinburg, TX, USA

Abstract

Pseudomonas aeruginosa, an opportunistic pathogen, is highly susceptible to developing resistance to multiple antibiotics. The gene encoding aspartyl-tRNA synthetase (AspRS) from P. aeruginosa was cloned and the resulting protein characterized. AspRS was kinetically evaluated, and the KM values for aspartic acid, ATP, and tRNA were 170, 495, and 0.5 μM, respectively. AspRS was developed into a screening platform using scintillation proximity assay (SPA) technology and used to screen 1690 chemical compounds, resulting in the identification of two inhibitory compounds, BT02A02 and BT02C05. The minimum inhibitory concentrations (MICs) were determined against nine clinically relevant bacterial strains, including efflux pump mutant and hypersensitive strains of P. aeruginosa. The compounds displayed broad-spectrum antibacterial activity and inhibited growth of the efflux and hypersensitive strains with MICs of 16 μg/mL. Growth of wild-type strains were unaffected, indicating that efflux was likely responsible for this lack of activity. BT02A02 did not inhibit growth of human cell cultures at any concentration. However, BT02C05 did inhibit human cell cultures with a cytotoxicity concentration (CC50) of 61.6 μg/mL. The compounds did not compete with either aspartic acid or ATP for binding AspRS, indicating that the mechanism of action of the compound occurs outside the active site of aminoacylation.

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3