The Extensive and Expensive Impacts of HEp-2 [HeLa], Intestine 407 [HeLa], and Other False Cell Lines in Journal Publications

Author:

Korch Christopher T.1,Capes-Davis Amanda2

Affiliation:

1. Divisions of Medical Oncology and Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA

2. CellBank Australia, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia

Abstract

Cell lines are essential models for biomedical research. However, they have a common and important problem that needs to be addressed. Cell lines can be misidentified, meaning that they no longer correspond to the donor from whom the cells were first obtained. This problem may arise due to cross-contamination: the accidental introduction of cells from another culture. The contaminant, which is often a rapidly dividing cell line, will overgrow and replace the original culture. The end result is a false cell line, also known as a misidentified or imposter cell line. False cell lines may come from an entirely different species, tissue, or cell type than the original donor. If undetected, false cell lines produce unreliable and irreproducible results that pollute the biomedical literature and threaten the development of reliable drug discovery and meaningful patient treatments. The goal of this study was to ascertain how widespread this problem is and how it affects the literature, as well as to estimate how much funding has been used to produce pools of scientific literature of questionable value. We focus on HEp-2 [HeLa] and Intestine 407 [HeLa], two false cell lines that are widely used in the scientific literature but were shown to be cross-contaminated in 1967. These two cell lines have been used in 8497 and 1397 published articles and extensively described as laryngeal cancer and normal intestine, respectively, rather than their true identity: the cervical cancer cell line HeLa. Discussed are tools, approaches, and resources that can address this issue—both retrospectively and prospectively.

Publisher

Elsevier BV

Subject

Molecular Medicine,Biochemistry,Analytical Chemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3