Two-Stage Model for Optimized Mitigation and Recovery of Bridge Network with Final Goal of Resilience

Author:

Zhang Ning1,Alipour Alice1

Affiliation:

1. Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA

Abstract

Ensuring resilience of critical infrastructure systems when facing disruptions is of great importance to engineers, stakeholders, and decision makers. Providing an optimal strategy for strengthening infrastructure system performance before disruption and rapidly recovering systems after disruption are two visible approaches to enhance system resilience efficiently. However, because of the complexity of the interrelationship among system infrastructures and the budgetary limitation, there is an imperative requirement for a rigorous decision-making process to track the costs induced by any enhancement to the system. To address this issue, in this paper, a multiobjective and two-stage stochastic programming model was developed for minimizing network-level cost and mean risk by considering both pre- and post-event maintenance actions. To account for the effects of different improvement strategies on network resilience, this model was tested under various disruption scenarios that highlighted the hazard uncertainty by combining a variety of occurrence probabilities. In this model, pre-event activities represent bridge retrofit that could contribute to increasing robustness and redundancy of the network system, whereas post-event activities are bridge repair and recovery on the basis of the resilience-enhancing effects advanced by the pre-event actions. The consequential optimization is the optimal social-economic outcome that considers different construction and disruption scenarios, and indirect costs associated with the system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3